THANOS-2.indd 2

The scripting concrefe studio was carried out by
graduate sfudents at Georgia Tech and generously
supported by an extended two-day workshop led by
AutoDesSys, Inc. personnel.

1. Introduction

Exploration of problems of geometry
and form vis-a-vis specific means and
methods of assembly and construction
has always been a central question in
architectural pedagogy and practice.
Not all types of geometries are pos-
sible within given construction domains
and not all construction techniques are
suitable to solve given formal problems.
An iterative loop is clearly suggested at
the outset of the problem and novelty is
warranted by the designer’s reflective
understanding of the interplay between
both domains of composition and con-
struction. This paper discusses the de-
sign of an architectural pedagogy that is
based on this reflection-in-action ethos
and gives a brief account of its imple-
mentation in an advanced graduate ar-
chitecture studio curriculum.

Among many and different kinds of
ways that an architectural pedagogy can
be designed to foreground specific re-
lations between composition and con-
struction, computation promises a most
significant role: computer-controlled
design algorithms visualize designs that
would be difficult or even impossible
to be thought and described otherwise;
similarly, computer-controlled fabrica-
tion machinery produces designs that
would be very difficult to or even im-
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1_Sample of the cast modules and the prototypes developed (Lorraine Ong).
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possible to be produced otherwise. The
specific methodology described here
has been particularly choreographed
around issues pertaining to the design
and fabrication of concrete structures.
If generally, construction methods are
rooted in problems of aggregation, of
assembly, and of joinery using conven-
tional ‘units’ of construction, the foun-
dational difference in the construction of
concrete is its indexical relationship to
those very processes: concrete imprints
the marks of formwaork, it registers it, it
mirrors it, and it tattoos it; its raw liquid
state is defying any immediate addi-
tive assembly process. This dialectical
relationship between the figuration of
concrete form and the corollary configu-
ration of elements that create formwork
define the medium at its core. Alterna-
tively, if concrete has seen a range of
expressions throughout history, it is due
to the varied techniques for formworks
that have produced the mold for which
these casts have become known. These
techniques are examined here further
as a way of understanding the nature of
concrete construction- and moreover the
nature of casting as a broader tectonic
and computational medium.

formas
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A series of design studies is described
here are presented as systematic studies
exploring the nature of casting including
aspects of its representation, its para-
metric definition, its algorithmic defini-
tion, and its prototyping. An underlying
motivation for the whole project is based
in our conviction that if conventional
buildings thrive on mass production,
recent possibilities of mass customiza-
tion to adapt concrete to particular cir-
cumstances, may very well emerge from
computational, technological, struc-
tural, programmatic, and geographic
contingencies. The design studies -and
the curriculum itself of the advanced
architectural design studio- can dif-
fer dramatically to foreground diverse
aspects of these contingencies; here a
brief account will be given to the over-
all structure of the proposed studies and
the emphasis will be given in the sys-
tematic exploration of the design worlds
linking underlying configuration (what is
topologically possible in a given design
space) and the casting techniques and
the associated algorithms that shape /
figure these configurations.

2. Form/formwork

The studio pedagogy is structured
around a series of four studies that are
all meant to explore different aspects of
the nature of casting; aspects of its rep-
resentation, its parametric definition, its
algorithmic definition, and its prototyp-
ing. The first exercise suggests a brief
look at the history and logic of casting:
the various technigues that history has
practiced including cast-in-place, fab-
ric-formed, pre-cast, as well as more
recent digitally oriented practices. The
goal here to examine constructively how
two-dimensional surfaces are formed to
define frameworks for three-dimension-
al molds: that is, how two-dimensional
surfaces of, say, wood, steel, fiberglass,
etc., have to be manipulated in order to
render orthogonal precision, curvature,
folds, ruled surfaces, and complex ge-
ometries. A sample of such explorations
is given in Figure 2.

The second study implements some of
the lessons encountered in the first study
towards the design of a bounded surface
unfolded in three dimensions featuring
at least one or more holes — that is to
say, a closed surface of topological ge-

8M10/2011 12:31:40 PM

THANOS-Zindd 5

nus n, for n=1. The feature of the open-
ing is a significant part of the design
problem to guarantee an encounter with
the geometrical complexities of surface
boundary, continuity, and closure, and
to evoke apt functional vocabularies rou-
tinely employed in architectural settings
as windows, doors, staircases, chim-
neys, gutters and so forth. The outcome
of the computation is the specification of
the formwork; not the form to foreground
reciprocal relation of figure/ground,
solid/open and similar design problems
that such reversals suggest. A sample of
such explorations is shown in Figure 3.

The third study synthesizes the re-
sults of the first two studies to create a
cast module of x.y.z modules, typically
1 x 2 x 4 meters, within which multiple
architectural contingencies can be em-
bedded. The module can be conceived
as a programmable zone that can define
the liner of a building. As such, its ar
chitectural duties are to establish some
relationship between structure and skin,
to calibrate the passage and quality of
light, and most importantly for this exer-
cise to establish a specific relationship
to the body. Furthermore, this threshold
between the inside and outside of the

building is considered as an opportu-
nity to investigate the relationship be-
tween architecture and furniture, using
the body as the ergonomic measure of
the cast. As a hand fits in a glove, the
body is suggested to be molded into the
building liner, not only for establishing a
scale for the exercise, but as an alibi to
negotiate the relationship between com-
plex and simple geometries.

The fourth study requires a generous
reflection of the formwork studies pro-
duced so far and their literal recasting in
algorithmic terms. More specifically, the
study requires an algorithmic explora-
tion of the forms and the casts -and the
modules they produce and their combi-
nations in growth structures- so that the
initial studies can provide the input for
general systems that explore topologi-
cally and figuratively formal variations.
The goal here is to script the forms and
the casts, and express them in terms of
functions, variables, statements, expres-
sions, complex data types and arrays.
The background of this work is the sys-
tematic encounter with the mathematics
of growth; the foreground of this work
is the generalization of what has been
already produced. It is suggested here

that this encoding of form and formwork
challenges conventional ways of think-
ing about design routinely produced in
studio and brings to the foreground un-
derlying assumptions and conventions
used in design. In essence, the task here
is the parametric description of the de-
signs dealt so far. It is expected that the
attempt to describe their forms in this
manner would not only describe a whole
class of designs that share similar char-
acteristics with the ones described or
produced so far, but that they would also
suggest possibilities that would have
been entirely off the discourse unless
this parametric definition had been at-
tempted. Various methods are suggested
to foreground this parametric definition;
most of them coalesce around the notion
of a simultaneous exhibition of all spatial
variants on a single surface simulating a
gradual growth. A sample of such explo-
rations is shown in Figures 4(a) - 4(c).

Among all possible construals of the
parametric definition of the cast - some
may be foregrounded more than others.
In the context of the pedagogy of this set
of design studies, the granularity and
scale of the module, the number of itera-
tions to show the gradual morphing of
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one variant to another, and the number
of discrete variants found in each com-
plete design, are emphasized more. A
rather detailed tabulation of the wonder-
ful complexity underlying growth in one
dimension is given below; this account
is given as a sample and part of a design
curriculum aspiring to merge studio
studies with generative systems, shape
grammars and topological schemas and
configurations. The three-dimensional
linear growth and the corresponding
configurations that can be built around
it, are taken here as an initial foundation
that allows the systematic exploration of
the combination of the form and form-
work with copies of itself in one dimen-
sion and facilitates their scripting and
algorithmic definition.

3. Linear configurations

Spaces and spatial arrangements with
one axis of growth are ubiquitous in na-
ture and the arts. In the organic world
this translatory symmetry, called by zo-
ologists metamerism is quite frequent
and suggests a part-to-whole relation
where the whole consists of transposed,
translated parts. In architectural design
this translatory symmetry appears in any

formas

-- ensayos --

configuration that consists of identical
parts along an axis such as serial modu-
lar spaces, colonnades, friezes, entabla-
tures, row housing, high-rise apartments
and so forth. And many a contemporary
architecture and artistic production
characterized by relentless repetitions
of spatial cells, including skins, files,
modules, textures and so on, may in-
deed be adequately described by these
structures.

In all these cases, these patterns may
be small or large, simple or complex,
coarse or smooth, discrete or continu-
ous, abstract or concrete, or they may
be presented in full semantic terms,
for example walls, staircases, shelves,
slabs, entablatures, row housing, street
networks, and so forth. Still there is al-
ways a difference between mathematical
abstraction and patterns of appearance;
the former are abstract, infinite, geomet-
rical, numerical; the latter are concrete,
finite, corporeal, subjective. The same
dualism exists here too; in mathematics
any pattern that has translations extends
in infinity, but in reality no spaces are
infinite, and most of what we perceive
as spaces or objects, at least for design
purposes, is finite. It is the process of

recognizing underlying transformations
that is of interest here, rather than the
actual finitude or infinititude of the pat-
tern.

In three-dimensional space there are
six isometric transformations, three di-
rect and three indirect. The three types
of direct isometries are rofations about
a center, translations along a line, and
screw rofations along a line; the lat-
ter are products of translations along a
line with rotations about a center in the
line. The three indirect transformations
are isometries that alter additionally
the handedness of a body of space and
they include reflections along a plane,
rotor reflections about a center, and
glide reflections along a line; the rotor
reflections are products of reflections
with rotations and the glide reflections
are products of reflections with transla-
tions. Information about the isometric
transformations and the ways they are
combined with each other is captured
in the definition of the various symmetry
groups. The mathematical study of the
groups has been given in many sources
(see for example, Armstrong 1988). For
some recent work pertaining to their ap-
plications in architectural discourse, see
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for example, Economou (1998; 2006),
Din and Economou (2011). The symme-
try groups can be additionally classified
according to their translational structure
and the dimensionality of the space that
contains the transformations that belong
in the set (March 1974). All symmetry
groups are subgroups of the Euclidean
group G consisting of all isometries,
which is a subgroup of the similarities
group S, consisting of all similarities.
The ten symmetry groups Gij in Euclid-
ean space, for i = the number of axes of
translation and j = dimension of space,
are given below.

GO0 GO1 G02 G03
G11 Gi12 G13

G22 G23

G33

The complete enumeration of all the
algebraic groups that comprise these
ten structures has been carried out at
different times, with different notations,
and different agendas in mind. Nice
accounts in the literature abound, see
in particular, Shubnikov and Koptsik

(1974). In the notation offered here the
subscripts i and | provide an unambigu-
ous way fo discuss all these structures
under a uniform labeling scheme. For
example, within the convention of this
scheme, GO3 are the groups that capture
the symmetry structures of three-dimen-
sional configurations that have no trans-
lational structure, that is, configurations
that have a center of symmetry; simi-
larly G22 are the groups that capture the
symmetry structures of two-dimensional
configurations that have two distinct
axes of translations, that is, essentially
an infinity of emergent translations that
fill out the plane. The structures of inter-
est here are the G13 groups, that is, the
algebraic groups that capture the sym-
metry structures of three-dimensional
configurations that have one axis of
translation, or alternatively, one axis of
growth. These configurations appear in
the literature with various names such as
rods (Shubnikov & Koptsik 1974), fibers
(Yale 1967), three-dimensional friezes
and others. A detailed account of their
formation can be found in Economou
(2006).

A complete catalogue of all linear
three-dimensional symmetry classes is

given below in seven sets, the so-called
symmorphic types, because the whole
linear configuration retains the symmetry
and form of the initial three-dimensional
module that is repeated along the line.
These symmorphic structures are fol-
lowed by all possible non-symmorphic
structures that can be extracted from
those to produce a total of nineteen lin-
ear configurations in three-dimensional
space.

The notation adopted here is the so-
called non-coordinate notation for sym-
metry classes (Shubnikov & Koptsik,
1974). This notation indicates the num-
ber and types of symmetry generators
and their corresponding spatial relation-
ships. More specifically the symmetry
symbols are: a rotation axis n of order
n, a mirror-rotation axis (2A) of order 2A,
a reflection plane m, a translation axis a
with an elementary translation a, and a
glide reflection axis (&) with an elemen-
tary translation a/2. The signs between
the symmetry elements denote the spa-
tial relationships between the symmetry
elements. The two-point sign (:) be-
tween two elements indicates that these
symmetry elements are perpendicular to
one another; the one point sign (.) in-
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dicates that these symmetry elements
are parallel to one another; lastly, an
oblique-stroke (/) sign indicates that
these symmetry elements are inclined
to one another; still this last sign is not
employed for the classes of design dis-
cussed here because an oblique axis to
an axis of franslation would generate a
second axis of translation and therefore
an infinite number of translations that fill
the plane. These symbols are enough
to describe the symmetry of any spa-
tial configuration in three-dimensional
space. For example, a pattern notated as
4 has one generator, the four-fold axis
of rotation, and consists of four sym-
mefries; a pattern notated as 4:m has
two generators, a four-fold axis of ro-
tation and a mirror reflection plane m
perpendicular to the axis of rotation, and
consists of eight symmetries; a pattern

]

. ~7
:

. "-‘ .

\/. \»

Ba

notated as a.4:m has three generators,
an axis of translation a parallel to a four-
fold axis of rotation and perpendicular to
mirror reflection planes m, and consists
of infinite symmetries.

There are various ways of representing
symmetry transformations; for brevity
and diagrammatic clarity here all sym-
metry classes are pictorially represented
in an orthographic projection to render
unambiguously the results of the ap-
plications of the transformations. The
number of labels, represented here as
chevrons, denote the number of identi-
cal parts in a configuration. Black labels
denote the position of the label towards
the viewer and white towards the back.
All axes of transformations are assumed
to be perpendicular to the plane of rep-
resentation. Each configuration is typi-
cally denoted by a single module. Two

or more modules side-by-side suggest
an unfolded representation of the mod-
ule; in other words, a module consist-
ing of say, three repetitions of a motif of
chevrons around three centers, means
that the total module consists of the
iterations of the modules represented
horizontally and applied the one after the
other. All configurations are enumerated
up to the number of rotations n = 6.
Diagrammatic representations of motifs
consisting more than six rotations are
left to the interested readers. The initial
array of points / centers to capture all
possible modules for configurations n
= 6 is shown in Figure 5.

3.1 n.a

The configuration n.a is generated by
successive translations of shapes with
symmetry n along their primary axis of
rotation at a distance a. The combina-

5 A diagrammatic canvas to capture the symmetries of all linear configurations in three-dimensional space. The axis of

translation is taken as perpendicular to the plane of the array. The horizontal rows denote rotational orders of symmetry

(1....6); the vertical columns denote repetitions of a motif along the axis of translation.

6a The six linear configurations 1.a; 2.a; 3.a; 4.a; 5.a; and 6.a based on the type n.a, for n =< 6.
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tions of the rotations n and the transla-
tions a, produce the screw rotations nj
for j = n. A substitution of the symme-
try axis n by the screw axis nj produces
three types of subgroups nj, for (j <
n/2), (j = n/2),and (j = n/2). The | =
n/2 and | = n/2 classes are isomorphic;
the first denotes a clockwise configura-
tion, the latter a counterclockwise one.
The j = n/2 is a neutral one in the sense
that is simultaneously left-handed and
right-handed. The four possible types in
this category are the n.a, and nj for (j <
n/2), (i = n/2), (j = n/2). A diagram-
matic representation of these four types
of patterns, for n = 6, is given in Figure
6(a)-(d).

. . . .
. . . .

- - - l‘ - - - -
. -
2. ~r . . . .
6e
3.2 2ih.a tations and rotor reflections. A substitu-

The configuration 2A.a is produced by
successive translations of shapes with
symmetry 2.A along their rotor reflection
axis at a distance a. By definition this
symmetry class occurs only for shapes
that have a mirror-rotation axis of an even
order 2A. There are no allowable substi-
tutions in this category. A diagrammatic
representation of the pattern 2f.a, for n
= 3, is given in Figure 7.

3.3 nim.a

The configuration n:m.a is produced
by successive translations of shapes with
symmetry n:m along their primary axis
of rotation at a distance a. The combi-
nations of translations and mirror planes
produces new reflections at distances a
as well as at their midpoints at a/2. Other
emergent symmetries include screw ro-

tion of the symmetry axis n by the screw
axis nj produces one more type of a sub-
group nj:m for (j = n/2) or alternatively
2nn:m. The other two possibilities for (j
< n/2) and (j = n/2) do not produce
new types because the mirror planes are
not part of the overall pattern. The two
possible groups in this category are the
n:m.a and 2nn:m. A diagrammatic rep-
resentation of the two types of patterns,
forn = 6, is given in Figure 8(a) - (b).

3.4 n:2.a

The configuration n:2.a is produced by
successive translations of shapes with
symmetry n:2 along their primary axis
of rotation at a distance a. The products
of the rotations n with the half-rotations
produce new emergent half-rotations at
distances a as well as at their midpoints
at a/2. The combinations of the rota-

6b The four linear configurations 31, 41, 51 and 61 based on the type nj, for j < n/2 and n =< 6. The two additional cases

of this type 52 and 62, for j = n-k, whereas n+1 < k < n/2 can be illustrated in a straightforward way.

Gic The three configurations 21, 42 and 63 based on the type nj, for j = n/2 and n = 6. These configurations are hoth

clockwise and counterclockwise.
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10a The six linear configurations 1.m.a; 2.m.a; 3.m.a;
4.m.a; 5.m.a; and 6.m.a based on the type n.m.a, for n
= 6.

10c The three types of linear configurations 21.m,
42.m; 63.m, based on the type nj.m, for n = 6 and j = n/2
or alternatively 2nn.m and n = 3.

10b  The six linear configurations 1.a; 2.a; 3.a; 4.a;
5.a; and 6.a based on the type n.a, for n = 6.

11a_The three linear configurations 2.m.a; 4.m.a and
G6.m.a based on the type 2in.m.a forn = 3.
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110 The three linear configurations 2.a; 4.a; and 6.a
based on the type 2n.a, forn = 3.

120 The three linear configurations 21.m:m; 42.m:
m; and 63.m:m based on the type Znn.m:m, forn = 3 or
alternatively, 2n = 6.
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12a  The six linear configurations 1.m:m.a; 2.m:m.a;
3.m:m.a; 4.m:m.a; 5.m:m.a; and 6.m:m.a based on the
type n.m:m.a, for n = 6.

12c_ The six linear configurations 1:m.a; 2:m.a; 3:m.a;
4:m.a; 5:m.a; and 6:m.a based on the type n:m.a, for n
= 6.

8M10/2011 12:31:57 PM



THANOS-2.indd 18

tions n and the translations a, produce
the screw rotations nj. Similarly to the
first case of these symmorphic spaces,
a substitution of the symmetry axis n by
the screw axis nj produces three types of
subgroups nj:2, for (j < n/2), (j = n/2),
(i = n/2). The four possible groups in
this category are the n:2.a and nj:2 for
(i =n/2), (j =n/2), (= n/2). Adia-
grammatic representation of these four
types of patterns, for n = 6, is given in
Figure 9(a)-(d).

The configuration n.m.a is produced
by successive translations of shapes
with symmetry n.m along their prima-
ry axis of rotation at a distance a. The
products of the rotations n with the mir-
ror plane produce new emergent mirror
bisecting the angle of the rotation n, for
n even number of rotations. Other emer-
gent symmetries include screw rotations

+ + 4@
-+ 4+
+ 4+ 0@
-+ 4+ 400
e 2 R X
+ 4+ 400
"+ + 0@
+ 4+ 400

nj, and glide reflections a. A substitution
of the symmetry axis n by the screw axis
nj produces the configuration nj.m for (j
= n/2) or alternatively 2nn.m. The other
two possibilities for (j < n/2) and (j =
n/2) do not produce new types because
the mirror planes are not part of the over-
all pattern. A substitution of the mirror
plane m by a glide reflection @ produces
the configuration n.a. The three possible
groups in this category are the n.m.a,
n.a and nj.m, for (j = n/2). A diagram-
matic representation of these three types
of patterns, for n = 6, is given in Figure
10(a)-(c).

3.6 2i.m.a

The configuration 2A.m.a is produced
by successive translations of shapes
with symmetry 2A.m along their axis of
rotor reflection at a distance a. The prod-
ucts of the rotor reflections 2i with the
mirror planes m produce new emergent

13 Sample of the cast modules and the prototypes developed (Lorraine Ong).
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half-turn rotations bisecting the angle
of the mirror planes at distances a as
well as at their midpoints a/2. Other
emergent symmetries include glide re-
flections a along the mirror planes at
distances a. A substitution of the mirror
plane m by a glide reflection @ produces
the space 2A.a. The two configurations
in this class are the 2fi.m.a and 2n.a.
A diagrammatic representation of these
two types of patterns, forn = 3, is given
in Figure 11(a)-(b).

3.7 n.m:m.a

The configuration n.m:m.a is produced
by successive franslations of shapes
with symmetry n.m:m along the axis of
rotation at a distance a. The emergent
symmetries are many here because of
the presence of the four generators and
they include screw rotations nj, glide re-
flections &, reflections m bisecting the
angle of rotation n, reflections m along
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perpendicular mirror planes at distances
a as well as at their midpoints at a/2. A
substitution of the symmetry axis n by
the screw axis nj produces the space
nj.m:m for (j = n/2) or alternatively 2nn.
m:m. The other two possibilities for (j <
n/2) and (j = n/2) do not produce new
types because the mirror planes are not
part of the overall pattern. A substitution
of the mirror plane m perpendicular to
the axis of rotation n by a glide reflection
a produces the space n.A&:m. The three
configuration in this class are n.m:m.a,
2nn.m:m, and n.A:m. A diagrammatic
representation of these three types of
patterns, for n = 6, is given in Figure
12(a)-(c).

Discussion

A major motivation underlying this
waork is the exploration of the relationship
between visual design and construc-
tion as it is typically entertained in an
architectural design studio setting and
its critical comparison to mathematical
frameworks supported by formal studies
in design topologies, configurations and
generative schemata. Languages of de-
sign are generated by all different kinds
of rule-based systems including shape
grammars, cellular automata, L-systems
and so on (see for example, Stiny 2006);
configurations are similarly explored to
discern what is structurally possible in a
design context (March 1998; Economou
1999). Both provide a complementary
insight in design explorations and both
suggest alternative ways to tackle and
unravel complexity in design. The work
here oscillates between both ad hoc

views of design and systematic studies
and attempts a first comparison by relat-
ing the casts and forms with a specific
configurational problem, the class of
three-dimensional spaces characterized
by an axis of growth. The nineteen types
of algebraic group structures that capture
the properties of these configurations
were briefly described and illustrated to
show the expressive power of the struc-
tures of these spaces. A sample design
based on the parametric definition of a
single cast using the four-fold configu-
ration and its systematic employment
at various scales to produce a complex
undulating recursive surface is given in
Figures 1 and 13.
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